Solving Linear Systems by Matrices

Problems must be in standard form to use this method!

\[3x - y = 5 \]
\[2x + y = 15 \]

The coefficients and the answer will be entered into a matrix. The matrix will consist of two rows and three columns. For the problem above, the matrix is the following:

\[
\begin{bmatrix}
3 & -1 & 5 \\
2 & 1 & 15
\end{bmatrix}
\]

Entering the problem into the calculator:

- Go to MATRX.
- Toggle to EDIT.
- Press 1 or toggle to the desired matrix.
- At MATRX EDIT [A], type in 2 x 3.
- On the first row enter the coefficients of the \(x \) term and \(y \) term of the first equation. Enter the constant on the other side of the equal sign. Press ENTER after each.
 \[
 \begin{bmatrix}
 3 & -1 & 5 \\
 \end{bmatrix}
 \]
- On the second row enter the coefficients of the \(x \) term and \(y \) term of the second equation. Enter the constant on the other side of the equal sign. Press ENTER after each.
 \[
 \begin{bmatrix}
 2 & 1 & 15 \\
 \end{bmatrix}
 \]
- After the last entry, press 2nd QUIT. (This will take you to the home screen.)

Finding the solution to the problem:

- Go to MATRX.
- Toggle to MATH.
- Toggle down to B: rref(
- Press ENTER. rref(should show on the home screen.
- Go back to MATRX.
- Under NAMES select the correct matrix where data is entered, usually [A].
- Close parentheses) and press ENTER.

The answers will be in the last column with \(x \) being the top value and \(y \) being the bottom value.

\[
\begin{bmatrix}
1 & 0 & 4 \\
0 & 1 & 7
\end{bmatrix}
\]

The first row means \(1x + 0y = 4 \), so \(x = 4 \).
The second row means \(0x + 1y = 7 \), so \(y = 7 \).

The solution is the point ________________.

Practice using the matrix method to solve the puzzle on the following page.
Solving Linear Systems by Matrices

Solve each system by any method. Connect x-values and y-values in the diagram. When completed find: a square (outline it red), an octagon (outline it orange), a parallelogram (outline it blue), a right triangle (outline it yellow), and an obtuse triangle (outline it green).

<table>
<thead>
<tr>
<th>1. $x+y = 13$</th>
<th>2. $x+y = 14$</th>
<th>3. $y = x-7$</th>
<th>4. $x+2y = 4$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$y = 2x$</td>
<td>$y = x+4$</td>
<td>$y = x+7$</td>
<td>$y = x-10$</td>
</tr>
<tr>
<td>5. $y = 2x$ $3y + 2x = 48$</td>
<td>6. $x = y+8$ $4x+2y = 2$</td>
<td>7. $x = y+7$ $3x-5y = 25$</td>
<td>8. $x = 2y-12$ $5x+6y = 100$</td>
</tr>
<tr>
<td>9. $10x - 7y = 0$ $y = 24-2x$</td>
<td>10. $y = -3x$ $5x+y = 14$</td>
<td>11. $x-y = 2$ $x+y = 14$</td>
<td>12. $x+y = 16$ $x-y = 2$</td>
</tr>
<tr>
<td>13. $x - y = -24$ $x + 8y = 3$</td>
<td>14. $x - 2y = 8$ $y + 2x = -9$</td>
<td>15. $2x + 5y = -4$ $-3x + y = -11$</td>
<td>16. $2x - y = 3$ $y - x = 4$</td>
</tr>
<tr>
<td>17. $3y - 2x = 11$ $x + y = 17$</td>
<td>18. $4x + y = -1$ $2y + 6x = -12$</td>
<td>19. $3x - 2y = -25$ $x + 2y = 5$</td>
<td>20. $x+y = 1$ $y - x = 11$</td>
</tr>
<tr>
<td>21. $2x - 3y = 0$ $3x - 4y = 3$</td>
<td>22. $x - y = 30$ $3x + y = 6$</td>
<td>23. $2x + y = 14$ $x - y = 1$</td>
<td>24. $x+3y = -36$ $x-4y = -1$</td>
</tr>
</tbody>
</table>